翻訳と辞書
Words near each other
・ Gautam Sharma
・ Gautam Shiknis
・ Gautam Singhania
・ Gauss Moutinho Cordeiro
・ Gauss Peninsula
・ Gauss pseudospectral method
・ Gauss Research Laboratory
・ Gauss Speaker Company
・ GAUSS Srl
・ Gauss sum
・ Gauss Tower
・ Gauss' Method
・ Gauss's constant
・ Gauss's continued fraction
・ Gauss's diary
Gauss's inequality
・ Gauss's law
・ Gauss's law for gravity
・ Gauss's law for magnetism
・ Gauss's lemma
・ Gauss's lemma (number theory)
・ Gauss's lemma (polynomial)
・ Gauss's lemma (Riemannian geometry)
・ Gauss's principle of least constraint
・ Gauss's Pythagorean right triangle proposal
・ Gauss-Matuyama reversal
・ Gaussan
・ Gaussan Priory
・ Gaussberg
・ Gaussia


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Gauss's inequality : ウィキペディア英語版
Gauss's inequality
In probability theory, Gauss's inequality (or the Gauss inequality) gives an upper bound on the probability that a unimodal random variable lies more than any given distance from its mode.
Let ''X'' be a unimodal random variable with mode ''m'', and let ''τ'' 2 be the expected value of (''X'' − ''m'')2. (''τ'' 2 can also be expressed as (''μ'' − ''m'')2 + ''σ'' 2, where ''μ'' and ''σ'' are the mean and standard deviation of ''X''.) Then for any positive value of ''k'',
:
\Pr(\mid X - m \mid > k) \leq \begin
\left( \frac \right)^2 & \text k \geq \frac 0 \leq k \leq \frac
The theorem was first proved by Carl Friedrich Gauss in 1823.
==See also==

*Vysochanskiï–Petunin inequality, a similar result for the distance from the mean rather than the mode
*Chebyshev's inequality, concerns distance from the mean without requiring unimodality

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Gauss's inequality」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.